JOURNAL OF COMPUTATIONAL pHYsIcS 104, 23-29 (1993)

Numerical Study of a Singular Differential Equation Relevant for the
Finite 8 Tearing Mode in a Toroidal Plasma*

M. S. CHu, J. M. GREENE, M. KLaskY,! aND M. S. CHaNCE?

General Atomics, San Diego, California 92186-9784

Received October 16, 1990; revised August 21, 1991

The generalized Green's function method proposed by Miller and
Dewar (J. Comput. Phys. 66, 356 (1986)) and Pletzer and Dewar in
Computational Techniques & Applications: CTAC-89, Proceedings,
Im. Conf. Brishane, 1988, edited by W. L. Hogarth and B. J. Noye, in
press, for solving the singular differential equation occurring in the
finite A tearing mode problem has been tested numerically on a model
differential equation. This method is compatible with a variational
formulation of the problem and gives accurate numerical answers with
high powers of convergence with respect to the number of grid points
used. When the method is extended to the more physically relevant
two-sided problem at moderate pressure gradients, a less stringent
condition on the Frobenius expansion is required because the pringipal
value of the otherwise divergent integrals associated with the method
is shown to exist.  © 1993 Academic Press, Inc.

I. INTRODUCTION

The central numerical problem of importance in the finite
£ tearing mode in a toroidal plasma [3] is modeled on the
solution of the differential equation

d?  glx)
g =| — — =
v [dxz = ]y 0, (M
near its singular point x =0. In (1)
glx)= 3 x%g; (2)

i=0

is the power series expansion of g(x) with g, the coeflicient
of the ith power of x. The singular behavior is affected most
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by the values of g, and g, ; p is the perturbed flux function,
x is the equilibrium flux function label, and g, is related to
the magnetic well depth. (1) is defined between x = +1, with
x =0 being the location of the mode singuiar surface, and
x = +1, the location of external conducting boundaries. It is
easy to write down the general Frobenius expansion of the
solution to (1) near x=0,

o

y=[xI* 3 ax’. (3)

i=o0

The coeflicient g, of the (7 + x)th power of x is given by the
recurrence relation

“,i=( ) gmaj‘m)/{(a+j)(a+j—])—go]’

m=1

J=12 .. (4)

The indicial equation af{e—1)— g,=0 determines two
values for

Q
Ji
rol—
+I

¥

(3)

where

p=(go+3)" (6)

The interesting case for a tokamak is g, > 0, sc we assume
g>31 The o's in turn, determine the large and small
solutions for y
yo=Ix|"""# [l +a,x+ - +a,x’+ -1, (D
and
ys=ix"** [ +aex + -] (8)
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The solution of the numerical problem is thus reduced to
finding the value of 4, such that

y=yo+4dys (9)
satisfies the boundary condition y=0at x= +1.

Much former numerical work has been expended on
finding 4. One of the methods relies on a complicated
sequence of convergence studies by using a sequence of finite
elements to extract 4 [4]. The other one involves the
shooting method [57], starting from x=1, relying on
integrating the solutions accurately toward x =0 to extract
the functional dependence of y, and the value of 4 from y,
and yg. These have been known to be satisfactory in one-
dimensional problems where an extremely fine or adaptive
mesh is easily implemented, but a straightforward extension
to situations suitable for the two-dimensional problem is
unclear.

An alternative method (generalized Green’s function) has
recently been proposed by Miller and Dewar [1] and
Pietzer and Dewar [2]. It also utilizes the known behavior
of (7) and (8) near x =0 and expresses 4 as an integral of
the solutions. Due to the fact that A4 is expressed as an
integral, this method is expected to be superior.

It is the purpose of this note to substantiate the findings
of Refs. [1,2] and report that the method is directly
applicable to possible situations arising from the finite f
tearing mode in a tokamak,

In the next section, the method is described with
emphasis on the one-sided problem, ie, O0<x<1, the
results of which are presented in Section 1I1. In the real
physical situation, the two-sided problem is more relevant.
For this case, we have found that because of the existence of
the principal values of the integrals involved in the method,
we can relax the constraints on the number of terms
required in the Frobenius expansion. The results showing
this are described in Section IV.

II. DESCRIPTION OF THE METHOD

To begin, the solution y is decomposed as y= y,+ y,,
where y, is chosen as a sum of an # term truncated represen-
tation of y; given by (7)and y,,

yi=yL+ Yo (10}

The component yp, is o(x** ') or, explicitly,
(11)

b1
yo=x"+ap "+ ..

1t represents the “deviation” of y, from y; , and % is required
to be larger than g + 1, 50 that the deviation is smaller than

the small solution near x=0. y, is also required to satisfy
the boundary condition

»(l)=0 (12)
With y, thus specified, y, is determined by the relationship

Lyo= —Ly,, (13)
with the boundary conditions

yol0) = yo(1) =0. (14)

This is usually accomplished variationally by using a
galerkin expansion of y, and taking the appropriate inner
product of vy with (13). The coefficient 4 of the small solu-
tion yg can then be expressed as convergent integrals of y,
and y,. This relationship is easily derivable starting from

1
0=] (o+31) Llyo+ y1) dx
1 1
=J J’og}’cdx+j Y1 Eygdx
0 0]

1 1
+.[0 oLy, dx+L 1y, dx.

We note that

1 1
J, #1€rods=| vy de=—2pa,  (15)
50 4 can be written in the form
pdla, by=1I,(a, b) + I(a, b)— I1(a, b), (16)
with 2 =0, b=1 for the one-sided problem. In (16),
1 ¢#
Ii(a b)=5j y1 Ly, dx, (17)
) b
Iia,b)=| yo&@y dx, (18)
Lot dyeN g,
I{a, b)—EL [(EI) +£ 53 | (19)

It is easy to verify that A given by (16) is variational with
respect to yo with (13} as its Euler equation for the eigen-
function y,. Furthermore, (16} is invariant to the choice of
yp 80 long as £ > p + 3. The variational expression given by
(16) is a desirable form to be used for the tearing mode
study because, in this case, I, corresponds to dW and &
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corresponds to the Euler equation operator [6]. Both W
and .# are important concepts in magnetohydrodynamics.

So far in the formulation of the model problem, we have
tacitly assumed that the expansion in (2) for g(x) and conse-
quently the expansions (7) and (8) for y; and yg are known
accurately to arbitrary powers in x near x =0. In practice,
this is known, with a reasonable effort, only to a few terms.
Thus, one of the purposes of our study is to determine and
verify numerically how many terms in the expansion are
needed. It is clear from the definition (17) that I, is defined
if %y, vanishes at 1 to a sufficiently high power in x. This
means that the Frobenius expansion (7) for y. has to be
carried out to sufficiently high order. For a given g, this puts
the number of terms required to be n> 2y; i, n=2, for
l<pu<lor0<g<075n=3forl<pu<ior075<g<
1.25; ete.

To anticipate situations which might arise in the finite §
tearing mode in which multiple singular surfaces may arise,
say at x =g < 1, we modify y, so that

for a<x<l.

yilx)=0 (20)

III. NUMERICAL TESTS—THE ONE-SIDED PROBLEM

A finite element computer program employing Hermite
cubics [7] has been constructed to solve the variational
problem for 4. Three-point Gaussian integration was used
for the evaluation of the coefficient matrix in the variational
problem and the integrals [, f,, I;. Mesh accumulation is
arranged by taking the mesh points x, to be given by

x;={—1)dx (21)

Due to the fact that for the small solution

%z(u+%) xu—l/‘2+ “ey,

i (22)

and hence (dys/dx)|._o=0 for > 1, it is then possible to
put

s

P =0, (23)

x=0

as a boundary condition on dyg/dx, in addition to the other
two boundary conditions given in (14). From (13), it is casy
to show that the solution y, to (13) gives [,=2[;. This
relationship is verified to the roundoff accuracy of the com-
putation, which is 10712 to 10713, The requirement (20)
demands x =z to be treated as an internal boundary point.

Since .% is a second-order differential operator, we also
required

v

. =0

(24)

A=

In the following, we present three essential classes of
examples of the results for (16} derived from the numerical
solutions of (13) and compare these with the exact closed
form analytic solutions of (1}.

Case 1. g = g,. In this case, a family of possible analytic
solution satisfying all the above requirements is given by

RS G I R

X" x<a
(1+7.4) ’ ’
= ' (25)
0, x>a,
(1+?lx)a1/2—p—hxh_x1/2+# x<a
1+7v,a) ’ '
y0=( 12 (26)
x”zf“_xl,'2+.u, X>a,
with
1 —2p— 2k
Y oo 27
é I +2p+ 2k (27)
and
ghma .y, (28)

This case corresponds to j= oo in (7). Equation {16)
converges for > u+ 1. It is also possible to give analytic
expressions to all the quantities I,, {5, 75 in the model. In
general, it is found that a small number of grid points
(N ~ 50) is sufficient to give accurate solutions of y; and
dy,/dx. Due to the fast variation of y, and dy,/dx near x =0,
it is found that a high degree of grid packing [ 8] is needed
for the convergence of these quantities. As has been
estimated in Ref. [8], grid packing leads to convergence in
Vo as N™% and dy,/dx as N3, Here we emphasize the con-
vergence of the quantities I, I,, and 7,. We have not been
able to obtain a good analytic estimate of the convergence
rate of these quantities. Numerically, they have been found
to converge at the rate of N % For instance, with N =81,
g0=0.25, x=4, h=20, a=0.5, the numerical solution y,
deviates from (26) by less than 2 x 107 and dy,/dx deviates
from {27) by less than 5 x 1073 everywhere. The maximum
error occurs near x =0. Shown in Fig. 1 is the relative error
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FIG. 1. Plot of the magnitude of (a} relative total error, (b) relative I, error, and (¢) relative I, error in y, a3 a function of number of grid points
& employed in the numerical computation for Case 1 in the text. e =4, A=13.5, and a = 0.5. The value of g, for curve 1 is 0.01; 2, 0.19; 3,0.37; 4, 0.56;
and 5, 0.74. The analytic value for 418 — I independent of g,. Note that the abscissa and the ordinate are on log,, scale.

for 4, & = (]AY"™ — A4372])/| 44"|; the relative error in [,
&, = (I — 1] )/|4*|; and the relative error in I,
&, = (115 — I5™))/14%™) for a=0.5, @ =4, h=13.5, with
various values of g, as a function of the number of grid
points used. We note that, although 7, may be integrated to
better accuracy than that shown here, three-point Gaussian
guadrature gives sufficient accuracy for our purpose. This is
a desirable situation for finite element application of the
present method using Hermite cubic elements, Note that the
plot is on a log,, versus log, scale. The maximum number
of grid points used is 200. It is clearly seen that the errors all
scaled as ¥~° In this example, &, and consequently &,,
reduces until the number of grid points reaches 100 and then
increases due to truncation error coming in from the
numerical evaluation of other quantities such as y,, and
I'(2u). This is checked by increasing the grid points beyond
200 and observing that the error further increases. With a
larger value of the arbitrary internal point a, the errors are
substantially reduced. We note that the condition (24) is
necessary, If it is not imposed, a large error occurs in dyy/dx
and in ali the other quantities.

(a) (®)

Case 2. g=g,—x. This case also allows an easy

complete analytic solution,

rxlﬂfﬂ_xyz_ﬂ_ 1+yx
124 1-+vya
y,=< xa”’z_"}'(l— u )x", x<a, (29)
1—2u
\0’ x>a;
\_fﬂ[i’@_@] (zﬁ)_y (2\/})]
r2p) [ Jo,(2) ™ 2“
1
12— Y2—p
X +—1—2ux
_ l+}=2x 1/2—pu—*h
a h
x(i 1—2#))6, X < a,
2
NEL [M—)JZH(Z O -T2 \/})} x>a,

']2;4(2)

(c)
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F1G. 2. Plot of the magnitude of (a) relative total error, {b) relative ], error, and {c¢) relative I, error in y, as a function of number of grid points
N employed in the numerical computation for Case 2 in the text. In this example, e =4, #= 3.5, and a=0.5. The value of g, for curve 1 is 0.01; 2, 0.17;
3,0.35; 4,0.62; and 5, 0.74. The analytic value for 4 is given in Eq. (32). Note that the abscissa and the ordinate are on log,, scale.
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with
S U2 =2 20— a2 20)
AT T 2+ 2k) — alZh+ 2u— 1)
and
Ama R YZu(Z)_cos(Q;m)
4 “2r(2,u)2[12,1(2) Sin(2mt)]’ .

for taking two terms in {7) for y, and a correspondingly
more complicated expression when three terms are adopted.
As discussed before, with two terms, the method guarantees
convergent results for 0.5 < u < 1. We have verified numeri-
cally that.this is true. The only complication arises in the
evaluation of 7, using the three-point Gaussian integration,
due to the nearly divergent behavior of its integrand. This is
not expected to give rise to difficulty because the analytic
value for I, is known there. Again, in this case, grid packing
1s necessary to guarantee good convergence. And, a two-
term representation for y, gives virtually identical values for
I, and I, as the three-term representation. Therefore, we
have verified that for 0 < g < 0.75 values, we need to know
the solution to y, only to two-term accuracy. Shown in
Fig. 2 are the relative errors in &, &}, and &, as a function
of Nwitha =4, i1=23.5, and a =0.5 for various values of g,.
It is seen that we again obtain N~ ° convergence.

Case 3. g=gy+x. For completeness, we list the
analytic solution for this case

32—
X 1 + yx
xl2—n ( v )

1—2u 14 7ya
Y= xa?=n=hf14 4 x" x<a, (33)
1—2u
0, x>ua,
Jx2 K, (2 _
o0 ] oo
1 3,'2 H
b= 1—2,u
Vo=
+(—"—*l+/x)a”2“‘_”x”, x<a, Y
1+ ya
2. /x K2
F(2ﬂ)[ K230y Izﬁf)} e
with

(1 —2u)(1 — 25— 2h) + a(3 — 2u— 2h)
(1 =2p)1+2u+20)+a(Zh+2u—1)

(35)

3d =

and

a1 Kp,(2) n } “
g MU"(2#)]2[1:M(2) rsmzm | O

The behavior of the numerical solution for this case
parallels the previous two cases with similar error and grid
convergence properties. We emphasize here that the errors
shown in Figs. 1a and 2a are partly due to the errors in f,.
I, can, in general, be written in terms of exactly known
functions. Their errors can, therefore, be ¢liminated and the
errors in 4 reduced to those coming from I, and I only.

IV. EXTENSION TO THE TWO-SIDED PROBLEM

An interesting extension of the above discussion is
provided by the situation in which Eq. (1) is defined over
the interval (—1,1), and the final desired answer is
A{—1, 1). In this case we note that we may deline

A(—1,1)=1lim [4(—

e—0

1, —&)+ A{e, 1)] (37)

Consider the following expression for %y,, where v, is a
series of the form of Eq. (7):

Ly, = 1“2]
— x| 72 sgn x){an[go— G- WG]+ g1}
— x| # {axlgo— (%‘*ﬂ)(%“ﬂ)] +a g + &}

— (38)

— x| [go+ 31—

Condition (6) elimmates the first term in (38). In the
examples in Section 1i, the second term is eliminated by the
choice of

£
—2,u'

(39)

a,,_=1

The resultant integral 7, would then be convergent if u < 1
or gy < 2. In the present situation, we keep only one term in
the Frobenius expansion by setting a,, =0, the leading term
in I,(—a, —€)+ I,(¢, b) is then given by

I(—a,—e}+1,(¢, b)
— b
<[ trgidr—| g lxTMdy, (40)
ql—20 _ pl=2m
- -y 7 41

an answer independent of ¢; i.e., the principal value exists.
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Note, however, that when only one term from y, in (7) is
included in y,, then the rest of the terms in (7) manifest
themselves in y,. This changes the leading behavior in y, to
be g, x**~# and, in the one-sided problem, gives rise to a
divergent contribution to (15}, which was used inobtaining
relation {16). However, it is easy to show that this divergent
contribution cancels exactly in (37). Further, we may verify
that the other integrals involved in the calculation of (37} all
converge. For this case, (16) remains intact when the prin-
cipal value evaluation of (37} is employed. Thus, we would
expect that only one term in the Frobenius expansion is
sufficient for 0< go<3orf<u<l.

Since Case 3 is the reflection through the origin of
Case 2, we combined them and modified (29) and (33)
to their corresponding expression for one term in the
Frobenius expansion. In this case, the analytical value of 4
is given by

A{—1,1)=45"= 4 480 (42)

To study the numerical behavior of A(-—1,1), the
straightforward Hermite cubics [7] are not sufficiently
accurate for representing y, in (13). We modified the
Hermite cubics of the first interval centered at x, to be

1 1 x\¥i-s
V=3 [(E * “)(?)
3 x 1/2+ 4
(@) oeren
X, x\32—u N2 ha
1—2u[(x_2) “(?) ]

O<x<x,.

w{x) =

Note that y,(x,} =1, ¥;(x;) =0, and w,(x,) = 0,
@;(x,)=1. So, these elements join smoothly to the right-
hand side of the ordinary Hermite cubics. The resultant
behavior of the relative error in A versus grid points is
plotted in Fig. 3 for different values of g, =0.01, 0.19, 0.37,
0.57, and 0.74. We note that, in this two-sided problem, f,
is formally divergent. To display clearly the errors coming
from I, and [7;, the analytic expression for the principai
value integral of 7, is used in 4. For further application of
the method in which analytic principal value of the integral
of I, is not readily available, a numerical integration scheme
for finding the principal value with errors smaller than those
displayed for A in Fig. 3 is calied for. It is seen that the
errors are uniformly small even for a relatively small num-
ber of grid points used, although the grid point convergence
scales only like N~'. When nonuniform grid is used, the
error turns out to be larger than uniform grid. We conclude
that for y in the range 3 < p < 1, sufficient accuracy may be
obtained for A{—1,1) by using only one term in the

Frobenius expansion for y,. We note in passing that this
phenomenon also manifests itself in the shooting method
described in Ref [5] for the one-dimensional problem,
provided that the proper limits are observed at the
singularity. This could prove to be of practical importance
when the Frobenius expansion involves complicated
operators like the 2ID finite § tearing mode problem,

V. CONCLUSIONS

In conclusion, we have found that the generalized Green’s
function method proposed by Dewar er al. [ 1, 2] allows a
variational formulation of the tearing mode problem in
finite £. With sufficiently high grid packing factor « ~ 4, the
method is accurate. The requirement of internal boundary
points increases the magnitude of the relative error but
keeps the correct scaling with the grid number to ¥~% For
the range of 0 < g, < 0.75, only one term in the Frobenius
expansion is needed when only the sum of the 4 from both
sides of the singularity 1s desired.

We note, in particular, the generalized Green’s function
method, by matching the large “trial function” to the large
solution with sufficient accuracy near the singularity, ren-
ders the final answers in terms of convergent integrals of the
solutions over the entire interval. For 2D problems, this is
superior to the method used in Ref [4], where only the
finite element closest to the singular surface is forced to
match to the large solution, resulting in numerical difficuity.

—2.5 —

—7.5 |—

I D S N |
1.0 1.5 2.0 2.3

N Y O N DS N

—10.0

FIG. 3. Plot of the magnitude of the relative error in the sum of 4
defined in Eq. (37) as a function of the number of grid points N employed
in the numerical computation described in Section III in the text. In this
example, o= 1, A=3.5, and a =0.75. The value of g, for curve 1 is 0.01,
2,0.17; 3,035 ‘4,0.62; and 5,0.74. The analytic value for 4 is given in
Eq. {42}. Note that the abscissa and the ordinate are on log,, scale.
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1t is also instructive to compare the generalized Green’s
function method with the method used in Ref. [5]. The two
methods are similar at the start. Both methods seek to
understand the analytic behavior of the large and small
solutions by performing Frobenius expansion of the equa-
tions. The difference lies in the utility of this analytic infor-
mation in the two methods. The method in Ref. [5] then
went on (o use purely numerical means to extract the coef-
ficients of both the large and smalil solutions. An adaptive
grid in the radial direction (excluding the singular point!),
was actually required to obtain these coefficients. In the
generalized Green’s function method, the analytic develop-
ment is carried further. The analytic behavior of the singular
solutions was used and folded into numerically convergent
integrals covering the whole radial interval. Only the small
solution needs to be handled explicitly by numerical means.
We regard these conceptual features in the generalized
Green’s function method superior to that given in Ref. [5].
These are explicitly relevant in 2D situations. The major dif-
ficulty in extending the generalized Green’s function method
to 2D is that the analytic pre-development of the theory
leading to the large solution could be quite formidabie.
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